Blood separation on microfluidic paper-based analytical devices.
نویسندگان
چکیده
A microfluidic paper-based analytical device (μPAD) for the separation of blood plasma from whole blood is described. The device can separate plasma from whole blood and quantify plasma proteins in a single step. The μPAD was fabricated using the wax dipping method, and the final device was composed of a blood separation membrane combined with patterned Whatman No.1 paper. Blood separation membranes, LF1, MF1, VF1 and VF2 were tested for blood separation on the μPAD. The LF1 membrane was found to be the most suitable for blood separations when fabricating the μPAD by wax dipping. For blood separation, the blood cells (both red and white) were trapped on blood separation membrane allowing pure plasma to flow to the detection zone by capillary force. The LF1-μPAD was shown to be functional with human whole blood of 24-55% hematocrit without dilution, and effectively separated blood cells from plasma within 2 min when blood volumes of between 15-22 μL were added to the device. Microscopy was used to confirm that the device isolated plasma with high purity with no blood cells or cell hemolysis in the detection zone. The efficiency of blood separation on the μPAD was studied by plasma protein detection using the bromocresol green (BCG) colorimetric assay. The results revealed that protein detection on the μPAD was not significantly different from the conventional method (p > 0.05, pair t-test). The colorimetric measurement reproducibility on the μPAD was 2.62% (n = 10) and 5.84% (n = 30) for within-day and between day precision, respectively. Our proposed blood separation on μPAD has the potential for reducing turnaround time, sample volume, sample preparation and detection processes for clinical diagnosis and point-of care testing.
منابع مشابه
Microfluidic Paper-Based Analytical Devices (μPADs) and Micro Total Analysis Systems (μTAS): Development, Applications and Future Trends
Microfluidic paper-based analytical devices and micro total analysis systems are relatively new group of analytical tools, capable of analyzing complex biochemical samples containing macromolecules, proteins, nucleic acids, toxins, cells or pathogens. Within one analytical run, fluidic manipulations like transportation, sorting, mixing or separation are available. Recently, microfluidic devices...
متن کاملNovel Migration Phenomena in Structured Microfluidic Devices
Microfluidic and lab-on-a-chip devices have gained widespread attendance in separation sciences since they are characterized by advantageous properties like a gain in throughput, time, cost, performance and analyte amount. Beyond these advantages, microfluidic devices open access to completely new separation or particle sorting phenomena far from thermal equilibrium based on Brownian motion and...
متن کاملDensity-based diamagnetic separation: devices for detecting binding events and for collecting unlabeled diamagnetic particles in paramagnetic solutions.
This paper describes the fabrication of a fluidic device for detecting and separating diamagnetic materials that differ in density. The basis for the separation is the balance of the magnetic and gravitational forces on diamagnetic materials suspended in a paramagnetic medium. The paper demonstrates two applications of separations involving particles suspended in static fluids for detecting the...
متن کاملConcurrent DNA Preconcentration and Separation in Bipolar Electrode-Based Microfluidic Device.
This paper presents a bipolar electrode (BPE) device in a microfluidic dual-channel design for concurrent preconcentration and separation of composite DNA containing samples. The novelty of the present effort relies on the combination of BPE-induced ion concentration polarization (ICP) and end-labeled free-solution electrophoresis (ELFSE). The ion concentration polarization effect arising from ...
متن کاملContinuous isolation of monocytes using a magnetophoretic-based microfluidic Chip.
Monocytes play an important role in the immune system and are responsible for phagocytizing and degrading foreign microorganisms in the body. The isolation of monocytes is important in various immunological applications such as in-vitro culture of dendritic cells. We present a magnetophoretic-based microfluidic chip for rapid isolation of highly purified, untouched monocytes from human blood by...
متن کاملComputational analysis of microfluidic immunomagnetic rare cell separation from a particulate blood flow.
We describe a computational analysis method to evaluate the efficacy of immunomagnetic rare cell separation from non-Newtonian particulate blood flow. The core procedure proposed here is calculation of local viscosity distributions induced by red blood cell (RBC) sedimentation. Numerical calculation methods have previously been introduced to simulate particulate behavior of individual RBCs. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 12 18 شماره
صفحات -
تاریخ انتشار 2012